Automatic Quality Measurement and Parameter Selection for Example-based Texture Synthesis
نویسندگان
چکیده
Texture synthesis algorithms have been researched extensively in the past decade. However, most synthesis algorithms are governed by a set of parameters and produce different results depending on which parameter settings are chosen in conjunction with an exemplar used as a basis for synthesis. So far, automatically selecting parameters suitable for synthesis has been a relatively unexplored topic. In effect, this makes texture synthesis supervised rather than fully automatic. In this technical paper, we propose automatic parameter optimization methods for example based texture synthesis. We cover research to directly estimate specific texture synthesis parameters, such as patch size and iteration convergence, based on input textures. We also examine various similarity measures and evaluate their effectiveness. The goal for each measure is to properly evaluate how well the resulting synthesis compares to the original input. A good similarity measure will enable the search for the optimal texture synthesis parameters by maximizing the quality of the synthesis as a function of parameters. We apply presented methods to a state of the art texture synthesis algorithm, namely the one proposed by Kopf et al [14]. It is easy to find a set of exemplars for which there is no single optimal set of settings. The results show a promising foundation for further research in establishing an automated optimal synthesis for a multitude of textures.
منابع مشابه
Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملAutomatic Classification of Benign And Malignant Liver Tumors In Ultrasound Images
Introduction: Differentiation of benign and malignant liver tumors is very important for finding appropriate treatment procedure. Human eyes sometime are not able to diagnose the type of liver tumor. Texture analysis is considered as a suitable method to increase the diagnostic power of medical images. In this study texture analysis is employed in order to classification of ben...
متن کاملIterative Approach for Automatic Beam Angle Selection in Intensity Modulated Radiation Therapy Planning
Introduction: Beam-angle optimization (BAO) is a computationally intensive problem for a number of reasons. First, the search space of the solutions is huge, requiring enumeration of all possible beam orientation combinations. For example, when choosing 4 angles out of 36 candidate beam angles, C36 = 58905 possible combinations exist. Second, any change in a beam 4 config...
متن کاملEstimation of parameter of proportion in Binomial Distribution Using Adjusted Prior Distribution
Historically, various methods were suggested for the estimation of Bernoulli and Binomial distributions parameter. One of the suggested methods is the Bayesian method, which is based on employing prior distribution. Their sound selection on parameter space play a crucial role in reducing posterior Bayesian estimator error. At times, large scale of the parametric changes on parameter space bring...
متن کاملActive Texture Synthesis Based on Multi-agent
In this paper, we propose a novel active texture synthesis algorithm based on multi-agent, aiming at overcoming some drawbacks of existing popular patch-based methods. By defining agents’ attributes and behaviors, we dexterously convert the texture synthesis issue to an optimization problem. It can quickly achieve high-quality results for a wide variety of textures without any extra overhead fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012